If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z^2=144
We move all terms to the left:
9z^2-(144)=0
a = 9; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·9·(-144)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*9}=\frac{-72}{18} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*9}=\frac{72}{18} =4 $
| 7x-3x+4-1=0 | | a2-3a+20=0 | | 2x+-6=3+-x | | a4-3a+20=0 | | 12-4/5(y+15)=4 | | 3/4x+6=9-1/4 | | 4(5+2)+7-3n=6+n(-8+3) | | 6m-1=2m+11 | | 3x^2-41=13 | | 5c+4=6 | | x=(2x+3)-4 | | -27-11d=17 | | 2/3y+25=-16 | | 3+2/7h=5 | | 8x/5=x+21 | | (z-25)-21=-11 | | 64x2-16x+1=0 | | 14x=560 | | (4+f)17=-14 | | 3^4x-16=4^3x-24 | | 3,5x=18,4-0,9 | | 3,6+x=35,5 | | (c+18)-17=7 | | 14,5+x=36,7 | | (11+n)-29=10 | | x+105=235 | | (17-k)14=16 | | 7,8=3,6+7x | | 3·(x-6)=2·(x-7) | | 87+3x=102 | | x-3/3=(2x+4)/5 | | 4(2x+9)=11x+12-3x+24 |